
SIAM J. OPTIM. c© 2018 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 1842–1866

ON EFFICIENTLY SOLVING THE SUBPROBLEMS OF A
LEVEL-SET METHOD FOR FUSED LASSO PROBLEMS∗

XUDONG LI† , DEFENG SUN‡ , AND KIM-CHUAN TOH§

Abstract. In applying the level-set method developed in [E. Van den Berg and M. P. Friedlander,
SIAM J. Sci. Comput., 31 (2008), pp. 890–912] and [E. Van den Berg and M. P. Friedlander, SIAM
J. Optim., 21 (2011), pp. 1201–1229] to solve the fused lasso problems, one needs to solve a sequence
of regularized least squares subproblems. In order to make the level-set method practical, we develop
a highly efficient inexact semismooth Newton based augmented Lagrangian method for solving these
subproblems. The efficiency of our approach is based on several ingredients that constitute the main
contributions of this paper. First, an explicit formula for constructing the generalized Jacobian
of the proximal mapping of the fused lasso regularizer is derived. Second, the special structure
of the generalized Jacobian is carefully extracted and analyzed for the efficient implementation of
the semismooth Newton method. Finally, numerical results, including the comparison between our
approach and several state-of-the-art solvers, on real data sets are presented to demonstrate the high
efficiency and robustness of our proposed algorithm in solving challenging large-scale fused lasso
problems.

Key words. level-set method, fused lasso, convex composite programming, generalized Jaco-
bian, semismooth Newton method

AMS subject classifications. 90C06, 90C20, 90C22, 90C25

DOI. 10.1137/17M1136390

1. Introduction. Let p : <n → < be the fused lasso regularizer, i.e.,

p(x) := λ1‖x‖1 + λ2‖Bx‖1 ∀x ∈ <n,
where λ1, λ2 ≥ 0 are given parameters and B ∈ <(n−1)×n is the matrix defined by
Bx = [x1 − x2, x2 − x3, . . . , xn−1 − xn]T ∀x ∈ <n. First proposed in [42], the fused
lasso regularizer is designed to encourage the sparsity in both the coefficients and
their successive differences. This regularizer is particularly suitable for problems with
features that can be ordered in some meaningful ways. In this paper, we consider the
following fused lasso problem:

(1) min {p(x) | ‖Ax− b‖ ≤ %} ,
where A ∈ <m×n is a given matrix and b ∈ <m and % > 0 are given data. Compared
to the regularized least squares form

(2) min

{
1

2
‖Ax− b‖2 + p(x)

}
,

∗Received by the editors June 27, 2017; accepted for publication (in revised form) April 25, 2018;
published electronically June 20, 2018.

http://www.siam.org/journals/siopt/28-2/M113639.html
Funding: The second author’s research was partially supported by a start-up research grant

from the Hong Kong Polytechnic University. The third author’s research was supported in part by
the Ministry of Education, Singapore, Academic Research Fund under grant R-146-000-256-114.
†Department of Operations Research and Financial Engineering, Princeton University, Princeton,

NJ 08544 (xudongl@princeton.edu).
‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong

Kong (defeng.sun@polyu.edu.hk). On leave from Department of Mathematics, National University
of Singapore.
§Department of Mathematics and Institute of Operations Research and Analytics, National Uni-

versity of Singapore, 10 Lower Kent Ridge Road, Singapore 119076 (mattohkc@nus.edu.sg).

1842

http://www.siam.org/journals/siopt/28-2/M113639.html
mailto:xudongl@princeton.edu
mailto:defeng.sun@polyu.edu.hk
mailto:mattohkc@nus.edu.sg

SOLVING FUSED LASSO PROBLEMS 1843

the least squares constrained formulation (1) is widely believed to be computationally
more challenging because of the complicated geometry of the feasible region. Yet,
formulation (1) is sometimes preferred in real-data modeling since one can always
control the noise level of the model through tuning the acceptable tolerance—the
parameter %.

A potentially feasible approach for solving problem (1) is the recently developed
level-set method [43, 44, 1]. It has been shown to possess superior performance in
many interesting least squares constrained optimization problems, including basis
pursuit denoising [43, 44] and matrix completion [44]; see [44, 1] for more examples.
When applied to problem (1), the level-set method developed in [43, 44, 1] executes an
iterative root finding procedure for solving the following univariate nonlinear equation:

φ(τ) = %,

where φ is the value function of the level-set minimization problem resulting from
exchanging the objective and constraint functions in problem (1), i.e.,

(3) φ(τ) := min {‖Ax− b‖ | p(x) ≤ τ} , τ ≥ 0.

Therefore, instead of solving problem (1) directly, the level-set method solves a se-
quence of minimization problems of the form (3) which are parameterized by τ . As
noted already in [43], this approach depends critically on the availability of an ef-
ficient solver for problem (3). Note that the algorithms proposed in [43, 44, 1] for
problem (3) require a closed-form representation or an efficient computation of the
metric projector ΠF over the feasible set F := {x ∈ <n | p(x) ≤ τ}. However, due to
the composite structure in p, no efficient approach for computing the metric projector
is currently available. Fortunately, as one will see shortly, the level-set method can
be carefully designed to avoid the potentially highly expensive computations of the
metric projector. Of course, it is an interesting topic to develop an efficient way to
compute the metric projector, but we will leave it for future research and will not
focus on this issue in this paper.

Although the computation of the projector mentioned above is hindered by the
composite structure in p, the proximal mapping of p in fact can be computed more
easily. Indeed, Friedman et al. in [14] showed that the proximal mapping of p can be
obtained, in a semi–closed-form expression, through the composition of the proximal
mappings of two individual parts of p, i.e., the `1 norm ‖ · ‖1 and the total variation
(TV) norm ‖B · ‖1. This decomposition property has been further studied in [45, 32]
and is termed “prox-decomposition.” From [45, 32], one can see that many interesting
regularizers, such as the elastic-net regularizer [48], Berhu regularizer [28], and many
feature grouping regularizers, enjoy this special “prox-decomposition” property. Al-
though the metric projectors on the level set of the aforementioned regularizers are
difficult to calculate, the exceptional “prox-decomposition” feature can be exploited
to design fast methods to compute their proximal mappings.

The “prox-decomposition” property of the fused lasso regularizer, together with
the difficulties of computing the metric projector ΠF , implies that when the level-set
method is applied to solve the fused lasso problem (1), one should solve a sequence
of regularized least squares problems. More specifically, we show that the level-set
method is based on iteratively solving the following nonlinear equation:

(4) ϕ(µ) := ‖Ax∗µ − b‖ = %,

1844 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

where x∗µ is an optimal solution of the regularized least squares problem

(5) min

{
1

2
‖Ax− b‖2 + µp(x)

}
and µ ≥ 0 is a varying parameter. Indeed, careful analyses on the properties of ϕ are
conducted to make the above procedure executable. Our approach here sheds new
light on how the level-set method can be used for solving least squares constrained
optimization problems in the form of problem (1) when the regularizer p possesses
complicated yet special structures. As the backbone of the level-set method, in this
paper, we aim to provide a highly efficient solver for solving the above fused lasso
regularized least squares problem (5).

To achieve the goal above, we propose using the semismooth Newton augmented
Lagrangian (Ssnal) method to solve problem (5). Here we are motivated by the fact
that Ssnal has already proven its superior performance in solving the `1 regularized
least squares problems [21]. Note that since the objective in (5) is convex piecewise
linear-quadratic, the asymptotically superlinear convergence of Ssnal has been shown
in [21, Theorem 3]. With the guarantee of this fast local convergence of the augmented
Lagrangian method (ALM), the sole key challenge in obtaining a fast practical algo-
rithm is in designing a highly efficient semismooth Newton method for solving the
subproblem at each ALM iteration. To this end, a computable generalized Jacobian
of the proximal mapping of the fused lasso regularizer p is critically needed. How-
ever, such a generalized Jacobian is not available in the literature possibly due to the
presence of the TV-norm and the complicated composite structure in p. Fortunately,
under the “prox-decomposition” property and the tools for analyzing the generalized
Jacobian of the metric projector over a polyhedral set developed in [18, 22], we are
able to derive a nontrivial formula for constructing the generalized Jacobian of the
proximal mapping of the fused lasso regularizer. Just as in [21], we need to carefully
extract and analyze the special second-order sparsity structure in the generalized Ja-
cobian to ensure the efficient implementation of the semismooth Newton method. In
particular, based on the second-order sparsity structure, we also design sophisticated
numerical techniques to efficiently solve the large-scale linear systems involved in the
semismooth Newton method. As the reader may expect, our Ssnal is highly efficient
and robust, and it substantially outperforms several state-of-the-art solvers in solving
large-scale fused lasso problems with real data.

The remaining parts of this paper are organized as follows. In section 2, we first
study the properties of the value function ϕ and then propose our executable level-
set method, called Ssnal-LSM, for solving the least squares regularized fused lasso
problem. A semismooth Newton based ALM, i.e., Ssnal, for solving the regularized
least squares subproblems in Ssnal-LSM is also discussed in subsection 2.2.1. Section
3 is devoted to studying the generalized Jacobian. In particular, the generalized
Jacobian of the solution mapping of a strongly convex quadratic programming (QP)
problem with parameters is studied in subsection 3.1. Based on the results obtained
in subsection 3.1, we are able to derive the explicit formula for constructing the
generalized Jacobian of the proximal mapping of the fused lasso regularizer in section
3.2. The sparsity structure of the generalized Jacobian is also carefully extracted and
analyzed. Section 4 focuses on using the semismooth Newton method to solve the
subproblems in Ssnal. Efficient numerical techniques for implementing the algorithm
are also discussed. In section 5, we conduct extensive numerical experiments with
large-scale real data to evaluate the performance of Ssnal and Ssnal-LSM in solving
various fused lasso problems. We conclude our paper in the final section.

SOLVING FUSED LASSO PROBLEMS 1845

Before we move to the next section, here we list some notation to be used later.
For any given vector y ∈ <n, we denote by Diag(y) the diagonal matrix whose ith
diagonal element is yi. For any given matrix A ∈ <m×n, we use Ran(A) and Null(A)
to denote the range space and null space of A, respectively. We use In to denote
the n × n identity matrix in <n×n and N† to denote the Moore–Penrose pseudo-
inverse of a given matrix N ∈ <m×n. Similarly, On and En are used to denote the
n × n zero matrix and the n × n matrix of all ones, respectively. Given any index
set α ⊆ {1, . . . , n}, we denote its cardinality by |α|. Let C ⊆ <n be a convex set.
Denote the indicator function over C by δC ; i.e., for any x ∈ <n, δC(x) = 0 if x ∈ C,
and δC(x) = +∞ if x 6∈ C. The Fenchel conjugate of the indicator function is the
support function δ∗C(y) = supx∈C〈x, y〉. For any given proper closed convex function
q : <n → (−∞,+∞], the proximal mapping Proxq(·) of q is defined by

Proxq(x) = argmin
z∈<n

{
q(z) +

1

2
‖z − x‖2

}
, x ∈ <n.

We will often make use of the Moreau identity Proxtq(x) + tProxq∗/t(x/t) = x, where
t > 0 is a given parameter, and q∗ is the Fenchel conjugate function of q. See [35,
section 31] for more discussions on proximal mappings.

2. A level-set method for the least squares constrained fused lasso
problems. In this section, we shall first analyze the properties of the value func-
tion ϕ defined in (4). Then, based on these properties, we are able to design an
executable level-set method, or equivalently a root finding approach, called Ssnal-
LSM, for solving the least squares constrained fused lasso problems of the form (1).
The algorithms for solving the subproblems in Ssnal-LSM are also discussed here.

2.1. Properties of the value function ϕ. For the purpose of studying the
properties of the value function ϕ defined in (4), we consider a problem similar to (5)
but with a more general regularizer

(6) min

{
1

2
‖Ax− b‖2 + µκ(x)

}
,

where κ : <n → (−∞,+∞] is a nonnegative positively homogeneous convex function
such that κ(0) = 0, i.e., a gauge function [35, section 15]. Here, we further assume
that κ is a convex piecewise linear function, i.e., a polyhedral convex function (see
[35, section 19] and [38, Theorem 2.49]). Obviously, the fused lasso regularizer p is a
special instance of κ. From [5], one can observe that piecewise linear gauge functions
are extremely important in handling some ill-posed inverse problems. The polar of κ
is defined by

κ◦(y) := inf{u ≥ 0 | 〈x, y〉 ≤ uκ(x) ∀x ∈ <n}.
Note that κ◦ is also a gauge function [35, Theorem 15.1]. It is not difficult to prove
that

κ◦ = δ∗κ≤1 and κ∗ = δκ◦≤1;

e.g., see [13, Proposition 2.1(iii) and (iv)]. Since κ is a polyhedral convex function,
its level set {x ∈ <n | κ(x) ≤ 1} is obviously a polyhedral convex set. Then, from [35,
Corollary 19.2.1], we know that κ◦ is also a polyhedral convex function. Now we can
write the dual of problem (6) as follows:

(7) max

{
−1

2
‖ξ‖2 + 〈b, ξ〉 | κ◦(AT ξ) ≤ µ

}
.

1846 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

For every µ, let Ω(µ) and ξ(µ) be the solution set of the primal problem (6) and
the dual problem (7), respectively. Obviously, as (multi-)functions of µ, dom(Ω) =
dom(ξ) = {µ ∈ < | µ ≥ 0}. It is also not difficult to see that ξ is a single-valued map-
ping on its domain. After all these preparations, we have the following proposition.

Proposition 1. It holds that
(i) for any µ ≥ 0, ξ(µ) = b − Ax ∀x ∈ Ω(µ), i.e., ‖b − Ax‖ is invariant on the

solution set Ω(µ);
(ii) for all µ ≥ µ∞ := κ◦(AT b), ξ(µ) = b and 0 ∈ Ω(µ);
(iii) ξ is a piecewise affine function on dom(ξ);
(iv) if µ∞ > 0, then for any 0 ≤ µ1 < µ2 ≤ µ∞, ‖ξ(µ1)‖ < ‖ξ(µ2)‖, i.e.,

‖b−Ax1‖ < ‖b−Ax2‖ for all x1 ∈ Ω(µ1) and x2 ∈ Ω(µ2).

Proof. (i) The equation follows directly from the KKT condition corresponding
to problems (6) and (7).

(ii) Obviously, for any µ ≥ 0, we have 1
2‖b‖2 ≥ − 1

2‖ξ(µ)‖2 + 〈b, ξ(µ)〉. Hence,
when µ ≥ µ∞, ξ(µ) = b is the unique optimal solution to (7) with dual optimal value
equals to 1

2‖b‖2. This also implies that x∗µ = 0 is an optimal to the primal problem

(6) with optimal value equal to 1
2‖b‖2.

(iii) Let S(µ) := {ξ ∈ <m | κ◦(AT ξ) ≤ µ}. Obviously, graphS := {(µ, ξ) ∈
<+ ×<m | κ◦(AT ξ) ≤ µ} = epi(κ◦AT). Since κ◦ is polyhedral convex, we know from
[35, Corollary 19.3.1] that κ◦AT is a polyhedral convex function and thus epi(κ◦AT)
is a polyhedral convex set. Therefore, S is a graph-convex polyhedral multifunction
[34, section 2]. Then, it follows from [34, Proposition 2.4] that ξ is a polyhedral
multifunction. Since ξ is a single-valued mapping on its domain, from [38, Exercise
2.48] and [12, Exercise 5.6.14], we know that ξ is piecewise affine on its domain.

(iv) It is easy to see that ‖ξ(µ)‖ is a nondecreasing function of µ ≥ 0; e.g., see
[4, Lemma 9.2.1]. We prove the required result by contradiction. Suppose that there
exist 0 ≤ µ1 < µ2 ≤ µ∞, such that ‖ξ(µ1)‖ = ‖ξ(µ2)‖. Then, ‖ξ(µ)‖ = ‖ξ(µ1)‖
for all µ ∈ [µ1, µ2]. Since ξ is a piecewise affine function on [µ1, µ2], we have that
ξ(µ1) = ξ(µ2).

Now κ◦(AT ξ(µ2)) = κ◦(AT ξ(µ1)) ≤ µ1 < µ2. Thus the constraint κ◦(AT ξ) ≤ µ2

is inactive at the solution ξ(µ2), and we easily get ξ(µ2) = b from the optimality
condition. From here we have µ2 > µ1 ≥ κ◦(AT ξ(µ2)) = κ◦(AT b) = µ∞, which
contradicts the fact that µ2 ≤ µ∞. This completes the proof of the proposition.

Remark 1. The piecewise affine property of ξ implies that ‖ξ(µ)‖ is piecewise
smooth as well as piecewise convex on µ ≥ 0. Indeed, on each piece, ξ can be
represented as ξ(µ) = µv + u for some given vectors u, v ∈ <m with ‖ξ(µ)‖ =√
‖u‖2 + 2〈u, v〉µ+ ‖v‖2µ2.

From Proposition 1, we know that the value function ϕ given in (4) is well defined
and nondecreasing. In particular, it is strictly increasing on µ ∈ [0, p◦(AT b)], where p◦

is the polar of the fused lasso regularizer. This monotonicity and the boundedness of
ϕ(µ) naturally imply that the bisection method or the secant method can be employed
to solve the univariate nonlinear equation (4), i.e., ϕ(µ) = %, where % > 0 is the given
parameter in problem (1). In fact, from Remark 1, [1, Theorem A.1], and [31, Theorem
3.2], we can prove that the secant method converges at least Q-superlinearly when
certain mild nondegeneracy conditions are satisfied. Under the assumption that the
inequality constraint ‖Ax−b‖ ≤ % is active at any optimal solution of problem (1), we
know that xµ∗ ∈ Ω(µ∗) is an optimal solution to problem (1), where µ∗ is a solution
of the nonlinear equation (4).

SOLVING FUSED LASSO PROBLEMS 1847

2.2. Algorithm Ssnal-LSM for the least squares constrained fused lasso
problems. Based on the properties of ϕ studied in the last subsection, we present
Ssnal-LSM, an executable level-set method, to solve the least squares constrained
fused lasso problem (1), where the involved subproblems are regularized least squares
problems of the form (2).

Since Ssnal is applied to solve the regularized least squares subproblems (8),
we term the algorithm the Ssnal based level-set method (in short, Ssnal-LSM).
More specifically, Ssnal-LSM is based on a bisection method to solve the univariate
nonlinear equation associated with the value function ϕ given in (4),

ϕ(µ) = %.

At the kth iteration of Ssnal-LSM, ϕ(µk) is evaluated through using Ssnal to solve
the subproblem (8) for the given parameter µk ≥ 0. The detailed steps of our algo-
rithm Ssnal-LSM for solving (1) are given as follows.

Algorithm Ssnal-LSM: An Ssnal based level-set method for (1).

Let µ∞ > µ0 ≥ 0 be two given parameters. Set µ = µ0, µ = µ∞ and µ1 = (µ+ µ)/2.
For k = 1, 2, . . ., perform the following steps in each iteration:
Step 1. Use Ssnal to compute

(8) xk = arg min
{1

2
‖Ax− b‖2 + µkp(x)

}
.

Step 2. Compute ϕ(µk) = ‖Axk − b‖. If ϕ(µk) > %, update µ = µk; otherwise,
µ = µk.

Step 3. Update µk+1 = (µ+ µ)/2 .

2.2.1. A semismooth Newton based ALM for subproblems (8). In this
subsection, we present the backbone of the level-set method—a highly efficient algo-
rithm for solving the fused lasso regularized least squares problems arising at each
iteration of the method. Critical numerical issues concerning its efficient implemen-
tations will be discussed in section 4.

Given A ∈ <m×n, b ∈ <m, λ1, λ2 ≥ 0, note that the subproblems of the level-set
method can be written as follows:

(P) max

{
f(x) := −1

2
‖Ax− b‖2 − p(x)

}
,

where the fused lasso regularizer p is given by p(x) = λ1‖x‖1 + λ2‖Bx‖1 ∀x ∈ <n. It
can be shown readily that the dual of (P) is given by

(D) min
{
g(y) :=

1

2
‖y‖2 + 〈y, b〉+ p∗(−AT y)

}
.

Now, we derive the augmented Lagrangian function for the unconstrained minimiza-
tion problem (D) following the framework presented in [38, Examples 11.46 and 11.57].
First, we identify problem (D) with the problem of minimizing g(y) = g̃(y, 0) over
<m for

g̃(y, ξ) :=
1

2
‖y‖2 + 〈y, b〉+ p∗(−AT y + ξ) ∀(y, ξ) ∈ <m ×<n.

1848 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

Note that g̃ is jointly convex in (y, ξ). The Lagrangian function l : <m × <n →
[−∞,+∞] associated with (D) is given by

(9) l(y;x) = inf
ξ
{g̃(y, ξ)− 〈x, ξ〉} =

1

2
‖y‖2 + 〈y, b〉 − 〈AT y, x〉 − p(x).

Given σ > 0, the augmented Lagrangian function corresponding to (D) can be ob-
tained by

Lσ(y;x) = inf
ξ

{
g̃(y, ξ)− 〈x, ξ〉+

σ

2
‖ξ‖2

}
= sup

s

{
l(y; s)− 1

2σ
‖s− x‖2

}
=

1

2
‖y‖2 + 〈y, b〉+ inf

s

{
p∗(s)− 〈x, AT y + s〉+

σ

2
‖AT y + s‖2

}
∀(y, x) ∈ <m ×<n.

Now, we can present the detailed steps of algorithm Ssnal for solving (D) as
follows. The algorithm is termed Ssnal since a semismooth Newton method will be
employed to solve the subproblems involved in the inexact augmented Lagrangian
method [36].

Algorithm Ssnal: A semismooth Newton based ALM for (D).

Let σ0 > 0 be a given parameter. Choose (y0, x0) ∈ <m × <n. For k = 0, 1, . . . ,
perform the following steps in each iteration:
Step 1. Compute

(10) yk+1 ≈ arg min{Ψk(y) := Lσk
(y;xk)}.

Step 2. Compute xk+1 = Proxσkp

(
xk − σkAT yk+1

)
.

Step 3. Update σk+1 ↑ σ∞ ≤ ∞ .

Since Ψk is strongly convex and differentiable, the standard stopping criteria
studied in [37, 36] for approximately solving (10) can be simplified to

(A) ‖∇Ψk(yk+1)‖ ≤ εk/
√
σk ,

∑∞
k=0εk <∞,

(B1)‖∇Ψk(yk+1)‖ ≤ (δk/
√
σk)‖Proxσkp

(
xk − σkAT yk+1

)
− xk‖, ∑∞

k=0δk < +∞,

(B2)‖∇Ψk(yk+1)‖ ≤ (δ′k/σk)‖Proxσkp

(
xk − σkAT yk+1

)
− xk‖, 0 ≤ δ′k → 0.

The global and local convergence results of the above algorithm have been exten-
sively studied in [37, 36, 25, 21]. We also refer the reader to the recent paper [10]
by Cui, Sun, and Toh for more discussions on new implementable stopping criteria
and the superlinear convergence of the ALM. Here we will list some of them without
proofs.

Theorem 1. Suppose that the solution set to (P) is nonempty. Let {(yk, xk)} be
the infinite sequence generated by Algorithm Ssnal with stopping criterion (A). Then,
the sequence {xk} is bounded and converges to an optimal solution of (P). Moreover,
{yk} is also bounded and converges to the unique optimal solution y∗ of (D).

If Algorithm Ssnal is executed under stopping criteria (A) and (B1), then {xk}
converges asymptotically Q-superlinearly. If, in addition, the stopping criterion (B2)
is also used, then {yk} converges asymptotically R-superlinearly.

SOLVING FUSED LASSO PROBLEMS 1849

3. Generalized Jacobian. Note that the generalized Jacobian of the proximal
mapping Proxp plays a vital role in the design of a semismooth Newton method for
solving the subproblems (10). Hence, to solve problem (1) with Ssnal-LSM, the
generalized Jacobian of the proximal mapping of the fused lasso regularizer needs to
be studied. In this section, we first investigate the generalized Jacobian of the solution
mapping of a parametric strongly convex quadratic programing (QP) problem. Then,
we specialize our attention to the generalized Jacobian of the proximal mapping of
the fused lasso regularizer. As stated in the introduction, a highly nontrivial formula
for constructing the generalized Jacobian is also derived here.

3.1. The generalized Jacobian of the solution mapping of a strongly
convex QP. In this subsection, we study the generalized Jacobian of the solution
mapping of a parametric strongly convex QP. The results presented here will form
the foundation for studying the generalized Jacobian of the proximal mapping of the
fused lasso regularizer.

Consider a nonempty polyhedral convex set D ⊆ <n expressed in the following
form:

D := {x ∈ <n | Cx ≥ c, Dx = d} ,
where C ∈ <k×n and D ∈ <l×n are given matrices and c ∈ <k and d ∈ <l are given
vectors. Without loss of generality, we assume that rank(D) = l and l ≤ n. Given
a point x ∈ <n, consider the solution mapping of the following strongly convex QP
problem:

(11) s(x) := argmin

{
1

2
〈s, Qs〉 − 〈x, s〉 | s ∈ D

}
,

where Q ∈ <n×n is a given symmetric positive definite matrix.
Given the strong convexity of the objective in problem (11), since D 6= ∅, the

solution mapping s(·) is well defined and single-valued throughout <n. When Q =
In, the above QP reduces to the metric projection problem and s is exactly the
projector over D. Similarly, s(x) can be viewed as a skewed projector of x onto the
polyhedral set D in the case when Q 6= In. By using [12, Proposition 4.14] and the
change-of-variables technique, we can easily show that s is piecewise affine on <n.
Based on this property, one may further use the results of Pang and Ralph [30] to
characterize the B-subdifferential and the corresponding Clarke generalized Jacobian
[8] of s. However, the calculations of these generalized Jacobians can be a very difficult
task to accomplish numerically for an arbitrary polyhedral set D and a general positive
definite matrix Q. To circumvent this difficulty for the case with Q = In, Han and
Sun in [18] defined a computable generalized Jacobian of the metric projector over D.
More recently, Han and Sun’s generalized Jacobian has been further studied and used
for developing efficient algorithms for solving QP problems with Birkhoff polytope
constraints [22]. Here, we aim to extend Han and Sun’s computable generalized
Jacobian, which is defined for the metric projector only, to the solution mapping of a
strongly convex QP.

From the definition of s(x), we know that there exist multipliers λ ∈ <k and
µ ∈ <l such that

(12)


Qs(x)− x+ CTλ+DTµ = 0,

Cs(x)− c ≥ 0, Ds(x)− d = 0,

λ ≤ 0, λT (Cs(x)− c) = 0.

1850 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

Let M(x) be the set of multipliers associated with x, i.e.,

M(x) := {(λ, µ) ∈ <m ×<p | (x, λ, µ) satisfies (12)}.
Since M(x) is a nonempty polyhedral convex set containing no lines, it has at least
one extreme point denoted as (λ̄, µ̄) [35, Corollary 18.5.3]. Denote

(13) I(x) := {i | Cis(x) = ci, i = 1, . . . ,m},
where Ci is the ith row of the matrix C. Define a collection of index sets:

K(x) := { K ⊆ {1, . . . ,m} | ∃ (λ, µ) ∈M(x) s.t. supp(λ) ⊆ K ⊆ I(x),

[CTK DT] is of full column rank},
where supp(λ) denotes the support of λ (i.e., the set of indices i such that λi 6= 0)
and CK is the matrix consisting of the rows of C indexed by K. As noted in [18],
the set K(x) is nonempty due to the existence of the extreme point (λ̄, µ̄) of M(x).
Define the following multivalued mapping P : <n ⇒ <n×n:

P(x) :=

{
P ∈ <n×n | P = Q

−1 −Q−1
[C

T
K D

T
]

([
CK

D

]
Q

−1
[C

T
K D

T
]

)−1 [
CK

D

]
Q

−1
, K ∈ K(x)

}
.

We have the following proposition which states the first-order sensitivity results asso-
ciated with s(·). Its proof can be obtained through adapting the proofs in [18, Lemma
2.1] and [22, Theorem 1] with the help of change-of-variables.

Proposition 2. For any x ∈ <n, there exists a neighborhood U of x such that

K(y) ⊆ K(x), P(y) ⊆ P(x) ∀y ∈ U.
If K(y) ⊆ K(x), it holds that s(y) = s(x)+P (y−x)∀P ∈ P(y). Furthermore, let I(x)
be given as in (13). Denote

P0 := Q−1 −Q−1[CTI(x) D
T]

([
CI(x)

D

]
Q−1[CTI(x) D

T]

)† [
CI(x)

D

]
Q−1.

Then, P0 ∈ P(x).

Since P is obtained through generalizing the results of Han and Sun [18], we call
it the “generalized HS-Jacobian.” We end this section by showing that if the matrix
[CTK DT] is a diagonal matrix with only 0–1 diagonal elements, then the procedure
for computing a generalized HS-Jacobian P ∈ P(x) can be simplified greatly.

Proposition 3. Let θ ∈ <n be a given vector with each entry θi being 0 or 1 for
all i = 1, . . . , n. Let Θ = Diag(θ) and Σ = In −Θ. It holds that

(14) P := Q−1 −Q−1Θ
(
ΘQ−1Θ

)†
ΘQ−1 = (ΣQΣ)†.

Proof. We only consider the case when Θ 6= 0 since the conclusion holds trivially
if Θ = 0. Define

P̂ := I −Q− 1
2 Θ(ΘQ−

1
2Q−

1
2 Θ)†ΘQ−

1
2 .

Then P = Q−
1
2 P̂Q−

1
2 . From [22, Lemma 1], we know that P̂ d = Π

Null(ΘQ− 1
2)

(d)∀d ∈
<n. Since Null(ΘQ−

1
2) = Ran(Q

1
2 Σ), we have that

P̂ d = Π
Ran(Q

1
2 Σ)

(d) = Q
1
2 Σ(ΣQΣ)†ΣQ

1
2 d ∀d ∈ <n.

Therefore, P = Σ(ΣQΣ)†Σ = (ΣQΣ)†, where the last equality follows from the fact
that Σ is a diagonal matrix with 0–1 diagonal elements.

SOLVING FUSED LASSO PROBLEMS 1851

3.2. Efficient computations of the generalized Jacobian of Proxp(·). In
this section, we shall study the variational properties of the proximal mapping of the
fused lasso regularizer p, namely the generalized Jacobian of Proxp, and their efficient
computations. Recall that the proximal mapping of p is defined by

Proxp(v) := argmin

{
λ1‖x‖1 + λ2‖Bx‖1 +

1

2
‖x− v‖2

}
∀v ∈ <n,

where λ1, λ2 ≥ 0 are given data. Let xλ2(v) be the proximal mapping of λ2‖B · ‖1:

(15) xλ2(v) := argmin

{
λ2‖Bx‖1 +

1

2
‖x− v‖2

}
∀v ∈ <n.

Next we recall a key result in [14] concerning the computation of Proxp.

Proposition 4 (see [14, Proposition 1]). Given λ1, λ2 ≥ 0, it holds that

Proxp(v)= Proxλ1‖·‖1(xλ2(v)) = sign(xλ2(v)) ◦max(|xλ2(v)| − λ1, 0) ∀v ∈ <n.

The above proposition states that the proximal mapping of the fused lasso regu-
larizer λ1‖ · ‖1 + λ2‖B(·)‖1 can be decomposed into the composition of the proximal
mapping of λ1‖ · ‖1 and the proximal mapping of λ2‖B(·)‖1. See [45, 32] for the
extensions of the above result to other regularizers. Given v ∈ <n, from Proposition
4, it is clear that the efficient computation of Proxp(v) mainly depends on the fast
calculation of xλ2

(v). Fortunately, many efficient direct algorithms have been devel-
oped for the fast computation of xλ2

(v) [11, 9, 19]. Meanwhile, we note that the
subgradient finding algorithm (SFA) designed in [24] is a fast iterative solver for com-
puting xλ2(v). The relative performance of most of the existing algorithms has been
well documented in the recent paper [2], which appears to suggest that for large-scale
problems, the direct solver developed and implemented by Condat [9] has generally
outperformed the other solvers. Hence, in our later numerical experiments, we will
use Condat’s algorithm and implementation1 for computing xλ2

(v).
To study the variational properties of Proxp, we first need the following lemma,

which provides an alternative way of computing xλ2(·) through the dual solution
zλ2

(·):

(16) zλ2
(u) := argmin

{
1

2
‖BT z‖2 − 〈z, u〉 | ‖z‖∞ ≤ λ2

}
∀u ∈ <n−1.

Lemma 1. Given λ2 ≥ 0, it holds that xλ2
(v) = v −BT zλ2

(Bv)∀v ∈ <n.
Proof. The result follows directly from Fenchel’s duality theorem [35, Theorem

31.3].

Given v ∈ <n, by Proposition 4 and Lemma 1, we have that

Proxp(v) = Proxλ1‖·‖1(xλ2
(v)) = Proxλ1‖·‖1(v −BT zλ2

(Bv)).(17)

Thus, if zλ2(·) is continuously differentiable near Bv and I −BT z′λ2
(Bv)B is nonsin-

gular, then we would get by the chain rule [41, Lemma 2.1] that

∂BProxp(v) =
{

Θ(I −BT z′λ2
(Bv)B) | Θ ∈ ∂BProxλ1‖·‖1(xλ2

(v))
}
,

1http://www.gipsa-lab.grenoble-inp.fr/∼laurent.condat/download/condat fast tv.c

http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/download/condat_fast_tv.c

1852 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

where ∂B denotes the B-subdifferential [8]. However, zλ2
(·) may not be differentiable

at Bv and the above chain rule is usually not applicable. Therefore, we need to define
the generalized Jacobian of Proxp in a proper way. The technical details on how this
can be done are presented next.

For any u ∈ <n−1, since BBT is symmetric and positive definite, zλ2(u) is the
unique solution to the strongly convex QP (16). Therefore, the generalized HS-
Jacobian of zλ2

can be obtained directly from the results developed in section 3.1.
We start by defining some notation. Denote the active index set by

(18) Iz(v) := {i | |(zλ2
(Bv))i| = λ2, i = 1, . . . , n− 1}

and a collection of index sets by

Kz(v) := { K ⊆ {1, . . . , n− 1} | supp(Bxλ2
(v)) ⊆ K ⊆ Iz(v)}.

Note that from the optimality conditions for zλ2
(Bv), one can show that supp(Bxλ2

(v))
is equal to the support of any optimal Lagrangian multiplier associated with the con-
straint ‖z‖∞ ≤ λ2. Define the multifunction Pz : <n ⇒ <(n−1)×(n−1) by

Pz(v) :=
{
P̂ ∈ <(n−1)×(n−1) | P̂ = (ΣKBB

TΣK)†, K ∈ Kz(v)
}
,

where ΣK = Diag(σK) ∈ <(n−1)×(n−1) with

(19) (σK)i =

{
0 if i ∈ K,
1 otherwise, i = 1, . . . , n− 1.

Note that according to Proposition 3, Pz(v) is exactly the generalized HS-Jacobian
of zλ2

at Bv. Define the multifunction Px : <n ⇒ <n×n by

Px(v) :=
{
P ∈ <n×n | P = I −BT P̂B, P̂ ∈ Pz(v)

}
.

Here Px(v) can be viewed as the generalized HS-Jacobian of xλ2
at v. More precisely,

we can derive the following first-order sensitivity results for zλ2
(·) and xλ2

(·).
Proposition 5. For any v ∈ <n, there exists a neighborhood W of v such that

for all w ∈W

Kz(w) ⊆ Kz(v), Pz(w) ⊆ Pz(v), Px(w) ⊆ Px(v),

and {
zλ2(Bw) = zλ2(Bv) + P̂B(w − v) ∀ P̂ ∈ Pz(w),

xλ2
(w) = xλ2

(v) + P (w − v) ∀P ∈ Px(w).

Proof. The desired results follow from Propositions 2 and 3 and [22, Lemma 1].

Next we show that we can derive an explicit formula to calculate the generalized
Jacobian P ∈ Px(v) when the special structure of B is taken into consideration.
For 2 ≤ j ≤ n, define linear mappings Bj : <j → <j−1 such that Bjx = [x1 −
x2; . . . ;xj−1 − xj]∀x ∈ <j . With this notation, we can write B = Bn. The following
lemma is needed for later discussions and can be proved through direct calculations.

SOLVING FUSED LASSO PROBLEMS 1853

Lemma 2. For 2 ≤ j ≤ n, it holds that

Tj := Ij −BTj (BjB
T
j)−1Bj =

1

j
Ej .

Proposition 6. Let Σ ∈ <(n−1)×(n−1) be a nonzero N -block diagonal matrix
Σ = Diag(Λ1, . . . ,ΛN), where for i = 1, . . . , N , Λi is either the ni × ni zero matrix
Oni

or the ni×ni identity matrix Ini
and any two consecutive blocks cannot be of the

same type. Denote J := {j | Λj = Inj
, j = 1, . . . , N}. Then, it holds that

Γ := In −BT (ΣBBTΣ)†B = Diag(Γ1, . . . ,ΓN),

where for i = 1, . . . , N ,

(20) Γi =


1

ni + 1
Eni+1 if i ∈ J,

Ini
if i 6∈ J and i ∈ {1, N},

Ini−1 otherwise

with the convention I0 = ∅. Moreover, Γ = H +UUT = H +UJU
T
J , where H ∈ <n×n

is an N -block diagonal matrix given by H = Diag(Υ1, . . . ,ΥN) with

Υi =


Oni+1 if i ∈ J,
Ini

if i 6∈ J and i ∈ {1, N},
Ini−1 otherwise

and U ∈ <n×N with its (k, j)th entry given by

(21) Uk,j =


1√
nj + 1

if

j−1∑
t=1

nt + 1 ≤ k ≤
j∑
t=1

nt + 1, and j ∈ J,

0 otherwise

and UJ consists of the nonzero columns of U , i.e., the columns whose indices are in
J .

Proof. Note that (ΣBBTΣ)† = Diag(T1, . . . , TN), where for i = 1, . . . , N ,

Ti =

{
(Bni

BTni
)−1 if Λi = Ini

,

Oni otherwise.

Then by Lemma 2 and the structure of B, we can obtain the desired results through
some direct calculations.

Define the multifunction M : <n ⇒ <n×n by

(22) M(v) :=
{
M ∈ <n×n | M = ΘP, Θ ∈ ∂BProxλ1‖·‖1(xλ2(v)), P ∈ Px(v)

}
.

Let v ∈ <n be an arbitrary point. The set M(v) is exactly the generalized Jacobian
of Proxp at v to be used in this paper. In numerical implementations, one needs to
construct at least one element in M(v) explicitly. This can be done in the following
manner. First, denote Θ = Diag(θ) with

(23) θi =

{
0 if |(xλ2

(v))i| ≤ λ1,

1 otherwise, i = 1, . . . , n.

1854 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

Then, let Iz(v) be given as in (18) and P = In − BT (ΣBBTΣ)†B, where Σ =
Diag(σ) ∈ <(n−1)×(n−1) with

(24) σi =

{
0 if i ∈ Iz(v),

1 otherwise, i = 1, . . . , n− 1.

Obviously, Θ ∈ ∂BProxλ1‖·‖1(xλ2
(v)) and P ∈ Px(v). Therefore,

(25) M := ΘP ∈M(v).

The following main theorem of this section shows why M(v) can indeed be re-
garded as the generalized Jacobian of Proxp at v.

Theorem 2. Let λ1, λ2 ≥ 0 be nonnegative numbers and v ∈ <n. Then, M
is a nonempty and compact-valued and upper-semicontinuous multifunction and for
any M ∈ M(v), M is symmetric and positive semidefinite. Moreover, there exists a
neighborhood W of v such that for all w ∈W

(26) Proxp(w)− Proxp(v)−M(w − v) = 0 ∀M ∈M(w).

Proof. It is obvious that the point-to-set mapping M has nonempty compact
images. The upper semicontinuity of M follows from the Lipschitz continuity of
xλ2

(·) and the upper semicontinuity of the B-subdifferential mapping ∂BProxλ1‖·‖1(·)
and the inclusion property on Px(·) obtained in Proposition 5. Since Proxλ1‖·‖1(·) is
piecewise affine and xλ2

(·) is Lipschitz continuous, (26) follows easily from Proposition
5 and [12, Theorem 7.5.17]. Thus, we only need to prove that for any v ∈ <n and
M ∈ M(v), M ∈ Sn+, the set of n × n symmetric positive semidefinite matrices.
Indeed, for any M ∈M(v), there exist Θ ∈ ∂BProxλ1‖·‖(xλ2

(v)) and K ∈ Kz(v) such

that M = Θ(I −BT (ΣKBB
TΣK)†B) with ΣK as given in (19). From Proposition 6,

we have I − BT (ΣKBB
TΣK)†B = Diag(Γ1, . . . ,ΓN) with Γi as given in (20). Note

that Θ can also be decomposed with the same pattern as Γ, i.e.,

Θ = Diag(Θ1, . . . ,ΘN).

ThusM = Diag(Θ1Γ1, . . . ,ΘNΓN).Define J := {j | Γj is not an identity matrix, 1 ≤
j ≤ N}. Since supp(Bxλ2

(v)) ⊆ K, we have that

Θj = Onj+1 or Inj+1 ∀ j ∈ J,

which implies ΘjΓj ∈ Snj+1
+ ∀ j ∈ J. Therefore, M ∈ Sn+ and the proof is completed.

Theorem 2 indicates that for an arbitrary constant γ > 0, the function Proxp is in
fact γ-order semismooth on <n with respect to the multifunction M in the following
sense of semismoothness defined in [26, 20, 33, 40].

Definition 1 (semismoothness). Let O ⊆ <n be an open set, K : O ⊆ <n ⇒
<m×n be a nonempty and compact valued, upper-semicontinuous set-valued mapping,
and F : O → <m be a locally Lipschitz continuous function. F is said to be semismooth
at x ∈ O with respect to the multifunction K if F is directionally differentiable at x
and for any V ∈ K(x+ ∆x) with ∆x→ 0,

F (x+ ∆x)− F (x)− V∆x = o(‖∆x‖).

SOLVING FUSED LASSO PROBLEMS 1855

Let γ be a positive constant. F is said to be γ-order (strongly, if γ = 1) semismooth at
x with respect to K if F is directionally differentiable at x and for any V ∈ K(x+∆x)
with ∆x→ 0,

F (x+ ∆x)− F (x)− V∆x = O(‖∆x‖1+γ).

F is said to be a semismooth (respectively, γ-order semismooth, strongly semismooth)
function on O with respect to K if it is semismooth (respectively, γ-order semismooth,
strongly semismooth) everywhere in O with respect to K.

Remark 2. Note that as a Lipschitz continuous piecewise affine function, Proxp
is γ-order semismooth on <n with respect to the Clarke generalized Jacobian ∂Proxp
for any given γ > 0 [8].

4. A semismooth Newton method for solving subproblem (10) in Ssnal.
As the reader may observe, the most expensive computation in each iteration of the
ALM is to solve the subproblem (10) in Step 1 of Ssnal. Let σ > 0 and x̃ ∈ X be
fixed. We shall propose an efficient semismooth Newton (Ssn) method to solve the
following inner problem (10) involved in each iteration of the Ssnal method:

(27) min
y∈<m

Ψ(y) := Lσ(y; x̃).

Since Ψ is a strongly convex function on <m, we have that, for any α ∈ <, the level
set Lα := {y ∈ <m | Ψ(y) ≤ α} is a closed and bounded convex set. Moreover,
problem (10) admits a unique optimal solution denoted as ȳ.

For y ∈ <m, denote x(y) := x̃− σAT y. Note that Ψ is continuously differentiable
on <m with

∇Ψ(y) = y + b−AProxσp(x(y)) ∀y ∈ <m.

Thus, the unique optimal solution ȳ of (27) can be obtained via solving the following
nonsmooth equation:

(28) ∇Ψ(y) = 0.

We can define the multifunction V : <m ⇒ <m×m by

V(y) := {V ∈ <m×m | V = Im + σAMAT , M ∈M(x(y))},

where M is the multifunction defined in (22). In contrast to the cases studied in
[47, 21], here the calculation of the Clarke generalized Jacobian of ∂Proxσp [8] is
much more involved given the inherited composition structure of the nonsmooth fused
lasso regularizer p. Thus we propose using M to replace ∂Proxσp. Obviously, the
multifunction V is also nonempty, compact-valued, and upper-semicontinuous, and
∇Ψ is γ-order semismooth on <m with respect to V for any γ > 0. Moreover, from
Theorem 2, we know that every element in V(y) is symmetric and positive definite.

We apply the following Ssn method to solve (28), and we expect to get a fast
superlinear or even quadratic convergence.

1856 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

Algorithm Ssn: A semismooth Newton algorithm for solving (28)
(Ssn(y0, x̃, σ)).

Given µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and δ ∈ (0, 1), choose y0 ∈ <m. Iterate the
following steps for j = 0, 1,
Step 1. Let Mj be a generalized Jacobian of p at x̃− σAT yj as defined in (25). Set

Vj := Im + σAMjA
T . Solve the linear system

(29) Vjd = −∇Ψ(yj)

exactly or by the conjugate gradient (CG) algorithm to find dj such that
‖Vjdj +∇Ψ(yj)‖ ≤ min(η̄, ‖∇Ψ(yj)‖1+τ).

Step 2. (Line search) Set αj = δmj , where mj is the first nonnegative integer m for
which

Ψ(yj + δmdj) ≤ Ψ(yj) + µδm〈∇Ψ(yj), dj〉.

Step 3. Set yj+1 = yj + αj d
j .

In order to study the convergence results for the above Ssn algorithm, the fol-
lowing proposition will be needed in what follows. It is in fact an extension of [29,
Theorem 2.1].

Proposition 7. Let θ : Ω→ < be a continuously differentiable function, and its
gradient ∇θ : Ω→ <n is locally Lipschitz on the open set Ω. If ∇θ is semismooth at
a point x ∈ Ω with respect to a nonempty, compact-valued, and upper-semicontinuous
multifunction K : Ω ⇒ Sn, then for any V ∈ K(x+ d) with d→ 0, we have

θ(x+ d)− θ(x)− 〈∇θ(x), d〉 − 1

2
〈d, V d〉 = o(‖d‖2).

Proof. From [39] and the semismoothness of∇θ at x, we know that V d−(∇θ)′(x; d)
= o(‖d‖)∀ d → 0 andV ∈ K(x + d). Then we get the desired limit by following the
proof of [29, Theorem 2.1].

Theorem 3. Let {yj} be the infinite sequence generated by Algorithm Ssn. Then
{yj} converges to the unique optimal solution ȳ of problem (27) and ‖yj+1 − ȳ‖ =
O(‖yj − ȳ‖1+τ).

Proof. Since by [47, Proposition 3.3], dj is always a descent direction, Algorithm
Ssn is well defined. The strong convexity of Ψ(·) and [47, Theorem 3.4] imply that
{yj} converges to the unique optimal solution ȳ of problem (27).

Note that every V ∈ V(ȳ) is symmetric and positive definite. Since V is upper-
semicontinuous, from [12, Lemma 7.5.2], we have that for all j sufficiently large,
{‖V −1

j ‖} is uniformly bounded. Since ∇Ψ is strongly semismooth with respect to V,
similar to the proof for [47, Theorem 3.5], it can be shown that for all j sufficiently
large,

(30) ‖yj + dj − ȳ‖ = O(‖yj − ȳ‖1+τ),

and for some constant δ̂ > 0, −〈∇Ψ(yj), dj〉 ≥ δ̂‖dj‖2. Based on (30), Proposition 7,
and [12, Proposition 8.3.18], we know that for µ ∈ (0, 1/2), there exists an integer j0
such that for all j ≥ j0,

Ψ(yj + dj) ≤ Ψ(yj) + µ〈∇Ψ(yj), dj〉,
i.e., yj+1 = yj + dj for all j ≥ j0. This, together with (30), completes the proof.

SOLVING FUSED LASSO PROBLEMS 1857

4.1. Efficient implementations of the semismooth Newton method by
exploiting second-order sparsity. When Algorithm Ssn is used to solve the sub-
problem (27), the most expensive step is the computation of the search direction dj

from the linear system (29). Given (x, y) ∈ <n × <m and σ > 0, the Newton system
(29) associated with the fused lasso problem is given by

(31) (Im + σAMAT)d = −∇Ψ(y),

where M ∈ M(x̃) is given in (25) with x̃ := x − σAT y. We note that in the case
of the standard lasso problem, the counterpart of M is a diagonal matrix, but here
the structure of M is much more complex. Since M is an n× n matrix, the costs of
naively computing AMAT and the matrix-vector multiplication AMAT d for a given
vector d ∈ <m are O(n2m + nm2) and O(n2 + mn), respectively. Thus, neither the
Cholesky factorization nor the CG method would be efficient for solving the above
linear system when n and/or m is large. In fact, in the high-dimensional setting where
the number of features n is usually of the order 105, it would be impossible to store
M in the RAM of a standard desktop computer when M is dense.

Fortunately, in the previous section, we have already extracted and analyzed the
structure of M . From (25), we know that

M = ΘP with P = In −BT (ΣBBTΣ)†B,

where diagonal matrices Θ, Σ are given in (23) and (24), respectively. Note that Σ is
an N -block diagonal matrix where Σ = Diag(Λ1, . . . ,ΛN) such that each Λi ∈ <ni×ni

is either the zero matrix or the identity matrix, and any two consecutive blocks are
of different types. Let J := {j | Λj = Inj , j = 1, . . . , N}. It can be seen from
Proposition 6 that P could be expressed as the sum of a low rank matrix and a
diagonal matrix. More specifically, we have that

P = H + UUT = H + UJU
T
J ,

where H ∈ <n×n is an N -block diagonal matrix given by

H = Diag(Υ1, . . . ,ΥN) with Υi =


Oni+1 if i ∈ J,
Ini if i 6∈ J and i ∈ {1, N},
Ini−1 otherwise,

and U ∈ <n×N with its (k, j)th entry is given by

Uk,j =


1√
nj + 1

if

j−1∑
t=1

nt + 1 ≤ k ≤
j∑
t=1

nt + 1, and j ∈ J,

0 otherwise,

and UJ consists of the nonzero columns of U , i.e., the columns whose indices are in
J .

Since M is a symmetric matrix and Θ, H are diagonal matrices with only 0–1
diagonal elements, it holds that

M = Θ(H + UJU
T
J) = Θ(H + UJU

T
J)Θ, Θ2 = Θ, H2 = H, ΘH = ΘHΘ.

Therefore,

AΘHAT = AΘHΘAT , AΘ(UJU
T
J)AT = AΘ(UJU

T
J)ΘAT .

1858 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

Define the following index sets:

α := {i | θi = 1, i ∈ {1, . . . , n}}, β := {i | hi = 1, i ∈ α},

where θi and hi are the ith diagonal entries of matrices Θ and H, respectively. Then,
we have

AΘHAT = AΘHΘAT = AαHA
T
α = AβA

T
β ,

where Aα ∈ <m×|α| and Aβ ∈ <m×|β| are two submatrices obtained from A by
extracting those columns with indices in α and β, respectively. Meanwhile, we have

AΘ(UJU
T
J)AT = AΘ(UJU

T
J)ΘAT = AαŨ Ũ

TATα ,

where Ũ ∈ <|α|×r is a submatrix obtained from ΘUJ by extracting those rows with
indices in α and the zero columns in ΘUJ are removed. Here r is the number of
columns of Ũ . Note that |β| ≤ |α| ≤ n and r ≤ |J | ≤ n. Therefore, by exploiting the
structure in M , we can express AMAT in the following form:

AMAT = AβA
T
β +AαŨ Ũ

TATα .(32)

We call the above structure of AMAT and that of Im + σAMAT inherited from
M second-order structured sparsity. The term “second-order” is used because Im +
σAMAT can be viewed as a generalized Hessian of Ψ at the given point y.

From the structure uncovered in (32), we can reduce the costs of computing
AMAT and AMAT d for a given vector d to O(m|α|(m + r)) and O((m + r)|α|),
respectively. Due to the presence of the fused lasso regularizer, |α|, |β| and r usually
are much smaller than n. Thus, by carefully exploring the special “low rank + di-
agonal” structure and the hidden sparsity in M , we are able to achieve a significant
reduction in the cost of solving the linear system (31). More specifically, the total
computational cost of using the Cholesky factorization to solve the linear system is
reduced from O(m3)+O(m2n) to O(m3)+O(m2|α|(1+r/m)). We note that a similar
but much simpler reduction has been exploited in [21] for solving the classical lasso
problems. See Figure 1 in [21, section 3.3] for a graphical illustration.

The computational cost of solving (31) can be further reduced if the Sherman–
Morrison–Woodbury formula [17] is properly used. When m is large and the optimal
solution is indeed sparse, one is very likely to have r+ |β| � m and/or |β|+ |α| � m.

If r + |β| � m, let W := [Aβ , AαŨ] ∈ <m×(r+|β|). Then, we know that

AMAT = WWT and (Im + σAMAT)−1 = Im −W (σ−1Ir+|β| +WTW)−1WT .

That is, instead of factorizing an m ×m matrix, we only need to factorize an (r +
|β|)× (r+ |β|) matrix. In this case, the computational cost is reduced from O(m3) +
O(m2|α|(1 + r/m)) to O((r+ |β|)3) +O(m(r+ |β|)2). Similarly, if |β|+ |α| � m, we
have the following decomposition:

AMAT = W1W
T
2 withW1 := [Aβ , AαŨ ŨT] ∈ <m×(|α|+|β|), W2 := [Aβ , Aα] ∈ <m×(|α|+|β|).

Using the above decomposition of AMAT , we get

(Im + σAMAT)−1 = Im −W1(σ−1I|α|+|β| +WT
2 W1)−1WT

2 .

Thus, we only need to factorize an (|α| + |β|) × (|α| + |β|) matrix, and the total
computational cost is merely O((|α|+ |β|)3) +O(m(|α|+ |β|)2) instead of the original
O(m3 +m2|α|+mr|α|). Either way, we are able to greatly reduce the computational
cost for solving the linear system (31).

SOLVING FUSED LASSO PROBLEMS 1859

5. Numerical experiments. In this section, we first evaluate the performance
of Ssnal for solving fused lasso regularized least squares problems. Next, we demon-
strate the power of Ssnal in solving regularized least squares subproblems within the
level-set method for solving the least squares constrained fused lasso problems (1).
All our computational results are obtained by running MATLAB (version 9.0) on a
windows workstation (12-core, Intel Xeon E5-2680 at 2.50GHz, 128 G RAM).

5.1. Numerical results for fused lasso regularized least squares prob-
lems. For solving the fused lasso regularized least squares problems (2), we will
compare Ssnal with the state-of-the-art solver for fused lasso problems SLEP2 [23]
(which is based on Nesterov’s accelerated proximal gradient method [27, 3]) and the
popular alternating direction method of multipliers (ADMM) [15, 16]. For comparison
purposes, we also test the inexact ADMM (iADMM) [7] and the linearized ADMM
(LADMM) [46]. As already mentioned in section 3.2, the efficiency of computing
the proximal mapping Proxp depends critically on the availability of a fast solver for
computing the proximal mapping Proxλ2‖B(·)‖1 of the TV-norm ‖B(·)‖1. From the
results presented in [2], it appears that currently the most efficient code for computing
Proxλ2‖B(·)‖1 is Condat’s direct algorithm.3 Hence, we use this direct algorithm in all
the tested algorithms in the computation of Proxp. In particular, we enhanced the
performance of SLEP by replacing the subgradient finding algorithm for computing
Proxλ2‖B(·)‖1 in SLEP by Condat’s algorithm. While SLEP is used to solve the primal
problem (P), the ADMM type of methods are used to solve the following variants of
problem (D):

min

{
1

2
‖y‖2 + 〈y, b〉+ p∗(u) |AT y + u = 0

}
.

The main difference between ADMM and iADMM is how the linear systems corre-
sponding to y in the subproblems are solved. While ADMM solves the linear systems
exactly (up to machine precision) using a direct method, iADMM can use an iterative
solver such as the preconditioned conjugate gradient (PCG) method to solve the linear
systems inexactly. Clearly, when the linear system is large and using a direct solver
is expensive, iADMM would be preferred over ADMM. We have implemented Ssnal,
ADMM, iADMM, and LADMM in MATLAB. In particular, in our implementation
of ADMM type methods, we set the step-length to be 1.618.

In our numerical experiments, the regularization parameters λ1 and λ2 in the
fused lasso problem (P) are chosen as

λ1 = α1‖AT b‖∞ and λ2 = α2λ1,

where 0 < α1 < 1 and α2 > 0. We measure the accuracy of an approximate optimal
solution x̃ for (P) by using the following relative KKT residual:

η =
‖x̃− Proxp(x̃−AT (Ax̃− b))‖

1 + ‖x̃‖+ ‖Ax̃− b‖ .

We stop the tested algorithms when η ≤ 10−6. The algorithms will also be stopped
when they reach the preset maximum number of iterations (100 for Ssnal, and 20,000
for SLEP, ADMM, iADMM, and LADMM) or the maximum computation time of 7
hours. All the parameters for SLEP are set to the default values.

2http://www.yelab.net/software/SLEP/
3http://www.gipsa-lab.grenoble-inp.fr/∼laurent.condat/download/condat fast tv.c

http://www.yelab.net/software/SLEP/
http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/download/condat_fast_tv.c

1860 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

5.1.1. Numerical results for high-dimensional biomedical datasets. In
this subsection, we compare the algorithms on the test instances (A, b) obtained
from Kent Ridge Biomedical Data Set Repository.4 During the data collection pro-
cess, we normalize the matrix A to have columns with at most unit norm. We ex-
tract 10 instances, namely DLBCLH, DLBCN, DLBCLS, lungH1, lungH2, lungM, lungO,
NervousSystem, ovarianP, and overianS. All the instances are in the high-dimension-
low-sample-size setting.

We choose the parameters α1 ∈ {10−3, 10−4} and α2 ∈ {10, 2, 0.02, 0.01}, respec-
tively. That is, we test 80 instances in total. In our test, ADMM and iADMM are able
to successfully solve 68 and 73 instances, respectively, while SLEP fails to solve any
of the instances to the required accuracy of 10−6. Ssnal is the only algorithm that
can solve all 80 instances successfully. We note that the poor performance of SLEP
and LADMM is closely related to the fact that for all these examples, the Lipschitz
constants ‖A‖22 for the quadratic functions 1

2‖Ax− b‖2 are all rather large.
Table 1 reports the detailed numerical results for Ssnal, SLEP, ADMM, iADMM,

and LADMM in solving some of the larger instances in the biomedical datasets. (The
full results for this and subsequent tables are available at http://www.math.nus.edu.
sg/∼mattohkc/papers/fusedlassotables.pdf.) In the table, m denotes the number of
samples, n denotes the number of features, and “nnz(x)” and “nnz(Bx)” denote the
number of nonzeros in x and Bx obtained by Ssnal using the following estimation:

nnz(y) := min

{
k |

k∑
i=1

|ŷi| ≥ 0.999‖y‖1
}
,

where ŷ is obtained by sorting y such that |ŷ1| ≥ · · · ≥ |ŷn|. As can be observed,
Ssnal is much faster than all the other four first-order methods. For example, for
the ovarianP instances, Ssnal can be over 60 times faster than ADMM and 220
times faster than iADMM. For most of the test instances corresponding to the largest
problem ovarianS, Ssnal only needs about 20 seconds to solve the problems while
the other four algorithms run for 20,000 iterations and take about 15 to 90 minutes
to only produce rather inaccurate solutions. Here, the poor performance of SLEP,
ADMM, iADMM, and LADMM indicates that these first-order methods are incapable
of obtaining reasonably accurate solutions for difficult large-scale problems.

Comparing ADMM and iADMM, we note that since the sample sizes m for all
the tested problems are relatively small (less than 300), ADMM is generally faster as
the average cost of solving the m ×m linear system in each iteration is cheaper for
ADMM. But we shall see in the next subsection that iADMM would be faster than
ADMM when solving problems with large m.

Figure 1 presents the performance profiles of Ssnal, ADMM, iADMM, and
LADMM for all 80 tested problems. SLEP is not included since it fails on all the
test instances. Recall that a point (x, y) is in the performance profile curve of a
method if and only if it can solve exactly (100y%) of all the tested instances in at
most x times of the best method for each instance. It can be seen that Ssnal out-
performs the other 3 methods by a very large margin. Indeed, Ssnal is more than 20
times faster than all the other tested algorithms for the vast majority of the tested
instances.

5.1.2. Numerical results for UCI datasets. In this subsection, we test all
the algorithms on the same large-scale UCI datasets (A, b) as in [21] that are originally

4http://leo.ugr.es/elvira/DBCRepository/index.html

http://www.math.nus.edu.sg/~mattohkc/papers/fusedlassotables.pdf
http://www.math.nus.edu.sg/~mattohkc/papers/fusedlassotables.pdf
http://leo.ugr.es/elvira/DBCRepository/index.html

SOLVING FUSED LASSO PROBLEMS 1861

Table 1
The performance of various algorithms on fused lasso regularized least squares problems on

high-dimensional biomedical datasets (accuracy η ≤ 10−6). m is the sample size and n is the
dimension of features. In the table, “a” = Ssnal, “b” = SLEP, “c” = ADMM, “d” = iADMM,
and “e” = LADMM. “nnz” denotes the number of nonzeros in the solution obtained by Ssnal.

20 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

Table 1: The performance of various algorithms on fused lasso regularized least
squares problems on high-dimensional biomedical datasets (accuracy η ≤ 10−6). m
is the sample size and n is the dimension of features. In the table, “a” = Ssnal,
“b” = SLEP, “c” = ADMM, “d” = iADMM, and “e” = LADMM. “nnz” denotes
the number of nonzeros in the solution obtained by Ssnal.

η Time (hours:minutes:seconds)

Probname α1;α2 nnz(x) ; nnz(Bx) a | b | c | d | e a | b | c | d | e

m;n

DLBCLN 10−3 ; 2 818 ; 261 3.6-7 | 1.2-5 | 9.9-7 | 9.9-7 | 9.9-7 01 | 16 | 10 | 22 | 18

160;7399 10−3 ; 0.01 157 ; 306 9.1-8 | 4.7-5 | 9.8-7 | 6.5-7 | 3.7-6 00 | 14 | 17 | 37 | 18

‖A‖2 = 28.9 10−4 ; 2 848 ; 275 3.6-7 | 3.4-5 | 9.1-7 | 8.7-7 | 3.4-6 01 | 16 | 20 | 43 | 20

10−4 ; 0.01 158 ; 306 1.5-7 | 1.0-4 | 4.3-6 | 9.9-7 | 5.8-5 01 | 14 | 30 | 1:25 | 18

lungH1 10−3 ; 2 514 ; 325 4.9-7 | 1.1-4 | 8.7-7 | 9.3-7 | 3.9-5 01 | 28 | 13 | 22 | 33

203;12600 10−3 ; 0.01 188 ; 365 2.1-7 | 5.7-4 | 9.9-7 | 8.3-7 | 2.9-2 01 | 24 | 16 | 38 | 29

‖A‖2 = 81.5 10−4 ; 2 551 ; 344 9.2-8 | 7.2-4 | 9.9-7 | 6.5-7 | 6.7-2 01 | 28 | 28 | 1:02 | 34

10−4 ; 0.01 195 ; 375 5.6-8 | 1.7-3 | 9.9-7 | 8.5-7 | 4.2-2 01 | 25 | 37 | 1:34 | 31

lungH2 10−3 ; 2 646 ; 186 6.6-8 | 3.9-5 | 9.9-7 | 8.5-7 | 9.9-7 00 | 26 | 06 | 10 | 19

149;12533 10−3 ; 0.01 137 ; 268 4.6-7 | 1.5-4 | 9.9-7 | 7.9-7 | 2.2-5 00 | 22 | 24 | 50 | 29

‖A‖2 = 83.4 10−4 ; 2 775 ; 236 2.6-7 | 1.3-4 | 8.2-7 | 9.9-7 | 2.4-2 01 | 27 | 15 | 36 | 34

10−4 ; 0.01 146 ; 285 1.2-7 | 9.9-4 | 1.4-7 | 8.3-7 | 2.0-2 01 | 23 | 50 | 1:46 | 30

ovarianP 10−3 ; 2 824 ; 144 1.6-7 | 1.6-4 | 9.9-7 | 9.0-7 | 9.7-4 01 | 1:01 | 19 | 36 | 1:06

253;15153 10−3 ; 0.01 180 ; 285 1.3-7 | 6.2-4 | 9.9-7 | 9.9-7 | 2.7-3 01 | 53 | 59 | 2:55 | 1:00

‖A‖2 = 114 10−4 ; 2 1259 ; 350 2.7-7 | 4.5-4 | 8.2-7 | 9.7-7 | 1.1-2 01 | 58 | 45 | 1:51 | 1:05

10−4 ; 0.01 255 ; 412 9.9-8 | 1.4-3 | 2.9-5 | 1.9-5 | 4.4-3 01 | 55 | 1:55 | 6:11 | 1:01

ovarianS 10−3 ; 2 1958 ; 352 6.7-7 | 3.8-3 | 2.1-6 | 8.5-7 | 9.4-3 15 | 20:17 | 46:31 | 57:19 | 23:23

216;373401 10−3 ; 0.01 205 ; 409 6.3-7 | 8.5-3 | 1.6-3 | 3.6-4 | 3.8-2 14 | 18:41 | 41:12 | 1:15:03 | 21:55

‖A‖2 = 539 10−4 ; 2 1963 ; 380 2.5-7 | 7.3-3 | 1.1-3 | 1.8-3 | 9.0-2 20 | 16:39 | 45:03 | 1:17:03 | 22:59

10−4 ; 0.01 212 ; 422 2.5-7 | 6.6-3 | 1.2-3 | 6.8-2 | 1.8-1 18 | 18:15 | 44:24 | 1:50:34 | 23:13

Fig. 1. Performance profiles of Ssncg, ADMM, iADMM and LADMM on biomedical datasets.

Comparing ADMM and iADMM, we note that since the sample sizes m for all
the tested problems are relatively small (less than 300), ADMM is generally faster as
the average cost of solving the m ×m linear system in each iteration is cheaper for
ADMM. But we shall see in the next subsection that iADMM would be faster than
ADMM when solving problems with large m.

Figure 1 presents the performance profiles of Ssnal, ADMM, iADMM and LADMM
for all the 80 tested problems. SLEP is not included since it fails on all the test in-
stances. Recall that a point (x, y) is in the performance profile curve of a method if
and only if it can solve exactly (100y%) of all the tested instances in at most x times
of the best method for each instance. It can be seen that Ssnal outperforms the
other 3 methods by a very large margin. Indeed, Ssnal is more than 20 times faster
than all the other tested algorithms for the vast majority of the tested instances.

5.1.2. Numerical results for UCI datasets. In this subsection, we test all
the algorithms on the same large scale UCI datasets (A, b) as in [21] that are originally
obtained from the LIBSVM datasets [6].

In Table 2, we report the detailed numerical results for Ssnal, SLEP, ADMM,
iADMM and LADMM in solving the least squares fused lasso regularized problem
(2) on large-scale UCI datasets. In these tests, we choose the regularized parameter
α2 ∈ {1, 0.5, 0.2, 0.01}. Meanwhile, in order to produce reasonable non-zeros in the

20 40 60 80 100 120 140 160 180 200

at most x times of the best

0

0.2

0.4

0.6

0.8

1

(1
00

y)
%

 o
f t

he
 p

ro
bl

em
s

Performance profile: time

Ssnal
ADMM
iADMM
LADMM

Fig. 1. Performance profiles of Ssncg, ADMM, iADMM, and LADMM on biomedical datasets.

obtained from the LIBSVM datasets [6].
In Table 2, we report the detailed numerical results for Ssnal, SLEP, ADMM,

iADMM, and LADMM in solving the least squares fused lasso regularized problem
(2) on large-scale UCI datasets. In these tests, we choose the regularized parameter
α2 ∈ {1, 0.5, 0.2, 0.01}. Meanwhile, in order to produce reasonable nonzeros in the

1862 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

Table 2
Same as Table 1 but for large-scale UCI datasets.

SOLVING FUSED LASSO PROBLEMS 21

optimal solution x and Bx, in these tests, we choose α1 ∈ {10−6, 10−7} for prob-
lems E2006.train and E2006.test, α1 ∈ {10−5, 10−6} for problem bodyfat7 and
α1 ∈ {10−3, 10−4} for all the other instances. In total, we tested 80 instances. Note
that in order to save space, Table ?? only reports the results for a subset of these
instances. We also present in Figure 2 the performance profiles of Ssnal, SLEP,
ADMM, iADMM and LADMM for all the tested problems.

Fig. 2. Performance profiles of Ssncg, SLEP, ADMM, iADMM and LADMM on UCI datasets.

Table 2: Same as Table 1 but for large-scale UCI datasets.

η Time (hours:minutes:seconds)

Probname α1;α2 nnz(x) ; nnz(Bx) a | b | c | d | e a | b | c | d | e

m;n

E2006.train 10−6 ; 0.5 8 ; 13 2.1-7 | 2.1-3 | 2.5-7 | 3.4-7 | 3.2-3 03 | 18:49 | 36:42 | 7:34 | 18:39

16087;150360 10−6 ; 0.01 25 ; 47 6.1-8 | 9.9-4 | 8.8-8 | 5.3-7 | 6.4-3 04 | 21:12 | 50:04 | 9:48 | 19:48

‖A‖2 = 437 10−7 ; 0.5 657 ; 1069 9.3-7 | 4.2-3 | 2.7-7 | 4.9-8 | 8.5-3 19 | 20:13 | 42:04 | 13:29 | 20:05

10−7 ; 0.01 1424 ; 2764 1.7-7 | 4.3-3 | 4.2-7 | 8.9-7 | 9.1-3 1:13 | 19:41 | 45:20 | 18:01 | 20:14

E2006.test 10−6 ; 0.5 14 ; 24 2.6-8 | 6.8-4 | 3.6-8 | 5.7-7 | 4.2-3 02 | 5:32 | 2:55 | 2:17 | 6:37

3308;150358 10−6 ; 0.01 49 ; 95 1.7-8 | 4.9-4 | 9.2-8 | 3.3-7 | 4.7-3 02 | 5:20 | 2:59 | 2:22 | 6:39

‖A‖2 = 219 10−7 ; 0.5 765 ; 1384 2.8-8 | 1.2-3 | 5.4-7 | 3.9-7 | 5.1-3 12 | 5:31 | 4:10 | 4:56 | 6:53

10−7 ; 0.01 1317 ; 2581 2.9-7 | 1.1-3 | 7.1-7 | 7.8-7 | 5.1-3 53 | 5:07 | 4:23 | 5:15 | 6:24

log1p.E2006.train10−3 ; 0.5 4 ; 5 4.0-8 | 2.5-4 | 3.5-7 | 2.7-7 | 5.3-3 24 | 2:52:08 | 36:17 | 14:33 | 3:00:01

16087;4272227 10−3 ; 0.01 5 ; 9 9.6-8 | 1.8-5 | 6.5-7 | 4.7-7 | 2.4-3 25 | 2:45:56 | 43:08 | 16:21 | 3:00:01

‖A‖2 = 7650 10−4 ; 0.5 256 ; 340 1.2-7 | 1.3-4 | 9.9-7 | 8.8-7 | 1.3-2 53 | 2:47:20 | 52:33 | 32:45 | 3:00:01

10−4 ; 0.01 576 ; 1100 9.8-7 | 1.6-4 | 7.8-7 | 6.7-7 | 1.4-2 1:09 | 2:44:02 | 1:01:16 | 54:23 | 3:00:01

log1p.E2006.test 10−3 ; 0.5 4 ; 5 6.1-7 | 1.5-4 | 1.5-8 | 5.3-7 | 8.3-4 17 | 1:44:15 | 6:20 | 6:05 | 1:56:52

3308;4272226 10−3 ; 0.01 8 ; 15 5.8-8 | 1.4-4 | 2.7-7 | 2.0-7 | 5.2-4 21 | 1:39:06 | 8:32 | 8:45 | 1:52:15

‖A‖2 = 3830 10−4 ; 0.5 597 ; 842 7.3-8 | 2.5-4 | 5.1-7 | 6.8-7 | 1.6-3 58 | 1:41:13 | 11:54 | 14:40 | 1:54:20

10−4 ; 0.01 1059 ; 2035 2.0-7 | 2.2-4 | 2.5-7 | 9.8-7 | 2.7-3 42 | 1:35:41 | 12:16 | 13:37 | 1:46:12

pyrim5 10−3 ; 0.5 174 ; 123 8.5-7 | 5.6-3 | 9.9-7 | 9.9-7 | 3.2-4 04 | 8:27 | 12:17 | 29:20 | 9:58

74;201376 10−3 ; 0.01 75 ; 145 1.7-7 | 1.9-3 | 6.8-5 | 2.0-4 | 4.3-4 04 | 7:33 | 16:17 | 59:36 | 8:31

‖A‖2 = 1110 10−4 ; 0.5 233 ; 142 3.0-7 | 6.8-3 | 6.2-5 | 1.4-4 | 2.5-3 07 | 8:27 | 19:55 | 1:35:54 | 9:33

10−4 ; 0.01 91 ; 156 3.1-8 | 6.2-3 | 7.1-3 | 1.7-3 | 1.6-3 06 | 7:26 | 17:16 | 1:42:19 | 8:21

triazines4 10−3 ; 0.5 679 ; 260 2.9-7 | 3.4-3 | 2.9-5 | 5.9-3 | 3.8-3 25 | 1:02:49 | 2:07:21 | 3:00:02 | 1:03:59

186;635376 10−3 ; 0.01 217 ; 302 1.4-7 | 2.8-3 | 3.0-4 | 1.4-1 | 4.8-3 27 | 54:52 | 1:56:48 | 3:00:01 | 56:11

‖A‖2 = 4550 10−4 ; 0.5 875 ; 334 4.5-7 | 1.2-2 | 9.9-3 | 8.6-1 | 5.2-2 37 | 1:00:20 | 2:13:51 | 3:00:10 | 1:02:02

10−4 ; 0.01 223 ; 355 3.3-7 | 1.3-2 | 2.6-2 | 7.8-1 | 2.3-2 40 | 1:07:27 | 2:37:41 | 3:00:01 | 1:11:24

bodyfat7 10−5 ; 0.5 36 ; 29 6.4-7 | 2.1-4 | 9.9-7 | 6.0-7 | 2.6-6 03 | 7:14 | 2:22 | 7:59 | 7:39

252;116280 10−5 ; 0.01 25 ; 43 3.1-7 | 7.8-4 | 5.8-7 | 8.4-7 | 2.8-5 03 | 6:56 | 2:19 | 8:59 | 7:20

‖A‖2 = 230 10−6 ; 0.5 142 ; 136 7.9-7 | 1.4-3 | 9.2-7 | 9.4-7 | 9.1-4 05 | 7:05 | 3:03 | 19:30 | 7:33

10−6 ; 0.01 101 ; 190 9.2-8 | 1.4-3 | 9.9-7 | 9.9-7 | 8.7-4 06 | 6:41 | 9:33 | 47:33 | 7:02

housing7 10−3 ; 0.5 126 ; 149 4.0-7 | 2.1-4 | 9.9-7 | 9.2-7 | 2.4-6 02 | 7:21 | 4:20 | 17:24 | 7:33

506;77520 10−3 ; 0.01 151 ; 284 4.8-7 | 3.6-4 | 9.9-7 | 7.6-7 | 1.0-4 02 | 7:03 | 4:26 | 18:11 | 7:16

‖A‖2 = 573 10−4 ; 0.5 253 ; 352 1.6-7 | 4.4-3 | 9.9-7 | 7.6-7 | 4.0-4 03 | 7:26 | 6:44 | 1:02:18 | 7:36

10−4 ; 0.01 276 ; 543 2.7-7 | 7.3-3 | 9.9-7 | 7.0-7 | 1.3-3 04 | 6:59 | 8:55 | 1:36:21 | 7:16

It can be clearly observed in Table ?? and Figure 2 that Ssnal outperforms all
the other tested first-order algorithms by a large margin where the factor can be up
to at least 150 times faster. In fact, for over 80 percent of the instances, Ssnal is atoptimal solution x and Bx, in these tests, we choose α1 ∈ {10−6, 10−7} for problems

E2006.train and E2006.test, α1 ∈ {10−5, 10−6} for problem bodyfat7 and α1 ∈
{10−3, 10−4} for all the other instances. In total, we tested 80 instances. Note that in
order to save space, Table 2 only reports the results for a subset of these instances. We
also present in Figure 2 the performance profiles of Ssnal, SLEP, ADMM, iADMM,
and LADMM for all the tested problems.

It can be clearly observed in Table 2 and Figure 2 that Ssnal outperforms all the
other tested first-order algorithms by a large margin where the factor can be up to at
least 150 times faster. In fact, for over 80 percent of the instances, Ssnal is at least
20 times faster than all the other tested algorithms. We also note that Ssnal is the
only algorithm that can solve all the test instances to the required accuracy. For the
test instances corresponding to problem triazines4, Ssnal only needs less than 1
minute to produce a solution with the required accuracy while all the other first-order
algorithms spend over 1 hour (2 and 3 hours for ADMM and iADMM) to only pro-
duce poor accuracy solutions with η ≈ 10−3. These observations again demonstrate
the power of Ssnal over the other tested first-order algorithms. Moreover, from the
unfavorable performance of SLEP, ADMM, iADMM, and LADMM, one can safely
conclude that these first-order algorithms can only be used to solve relatively easy
problems. This fact together with the superior efficiency and robustness of Ssnal

SOLVING FUSED LASSO PROBLEMS 1863

20 40 60 80 100 120 140 160 180 200

at most x times of the best

0

0.2

0.4

0.6

0.8

1

(1
00

y)
%

 o
f t

he
 p

ro
bl

em
s

Performance profile: time

Ssnal
ADMM
iADMM
LADMM
SLEP

Fig. 2. Performance profiles of Ssncg, SLEP, ADMM, iADMM, and LADMM on UCI datasets.

indicates that it is necessary to incorporate second-order nonsmooth analysis into the
algorithmic design, especially when solving large-scale difficult problems. In particu-
lar, the efficiency of our Ssnal depends critically on our ability to extract and exploit
the underlying second-order structured sparsity in the problems.

Among the first-order methods, one can observe from the results correspond-
ing to E2006.train and log1p.E2006.train that when m (sample size) is large,
iADMM performs better than ADMM. This demonstrates the advantage of iADMM
over ADMM in having the flexibility of solving large m × m linear systems in the
subproblems inexactly by an iterative solver such as the PCG method. On the other
hand, when m is relatively small, it is advantageous to solve the m×m linear systems
in the subproblems of ADMM by a direct solver as opposed to using an iterative solver
as in the case of iADMM.

5.2. Numerical results for least squares constrained fused lasso prob-
lems. Given % > 0, recall the least squares constrained fused lasso problems given in
(1):

(33) min {p(x) | ‖Ax− b‖ ≤ %} .
In this section, we present the numerical results obtained by our practical level-set
method Ssnal-LSM for solving the problem.

For testing purposes, the fused lasso regularizer p is chosen as follows:

p(x) = ‖x‖1 + 2‖Bx‖1 ∀x ∈ <n.
The noise level controlling parameter % in (33) is chosen to be % = γ‖b‖, where
0 < γ < 1. We choose the initial parameters µ0 = 0 and µ∞ = ‖AT b‖∞. In our
numerical experiments, we measure the accuracy of an approximate optimal solution
x̃ for (33) by using the following relative residual:

η =
|ϕ̃− %|

max{1, %} ,

where ϕ̃ := ‖Ax̃− b‖. We stop the algorithm when η ≤ 10−6. In solving the subprob-
lems (8) by the Ssnal method, the required accuracy for xk is set to 10−8.

1864 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

Table 3
The performance of Ssnal-LSM on least squares constrained fused lasso problem (33) on large-

scale datasets (accuracy η ≤ 10−6). m is the sample size and n is the dimension of features.
“nnz” denotes the number of nonzeros in the solution. The computation time is in the format of
“hours:minutes:seconds.”

24 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

Table 3: The performance of Ssnal-LSM on least squares constrained fused lasso
problem (33) on large-scale datasets (accuracy η ≤ 10−6). m is the sample size
and n is the dimension of features. “nnz” denotes the number of nonzeros in the
solution. The computation time is in the format of “hours:minutes:seconds”.

Probname γ nnz(x) ; nnz(Bx) µ∗ Iteration η Time

m;n
E2006.train 1.0-1 840 ; 547 1.30− 2 40 1.2-7 3:07

16087;150360 1.5-1 1 ; 1 6.86 + 3 22 1.5-7 13

2.0-1 1 ; 1 1.11 + 4 22 2.0-7 12

log1p.E2006.train 1.0-1 345 ; 177 2.38 + 1 27 1.3-7 9:17

16087;4272227 1.5-1 20 ; 6 2.49 + 3 25 7.0-7 4:55

2.0-1 20 ; 6 3.94 + 3 25 3.3-7 4:46

E2006.test 5.0-2 2393 ; 2240 1.20− 3 43 5.9-7 4:45

3308;150358 7.5-2 603 ; 680 3.36− 3 41 5.1-8 1:08

1.0-1 1 ; 1 2.56 + 2 21 5.8-7 06

log1p.E2006.test 5.0-2 3685 ; 2609 1.40 + 0 34 2.3-7 15:40

3308;4272226 7.5-2 1504 ; 1003 3.27 + 0 31 5.8-7 8:59

1.0-1 20 ; 7 1.15 + 2 24 8.5-7 4:10

pyrim5 1.0-1 254 ; 49 3.74− 1 24 4.7-8 40

74;201376 2.0-1 38 ; 9 1.18 + 0 24 5.6-7 37

3.0-1 54 ; 10 2.45 + 0 23 7.1-8 35

triazines4 1.0-1 1338 ; 194 1.59− 1 27 8.2-7 5:32

186;635376 2.0-1 782 ; 47 1.91 + 0 23 9.4-7 3:26

3.0-1 243 ; 18 9.33 + 0 19 4.7-7 2:35

housing7 1.0-1 238 ; 134 3.87 + 0 28 5.7-7 36

506;77520 2.0-1 34 ; 21 7.06 + 1 23 5.0-7 20

3.0-1 17 ; 12 1.83 + 2 21 4.0-7 17

bodyfat7 1.0-4 731 ; 391 2.70− 6 35 4.9-8 1:00

252;116280 1.0-3 322 ; 150 9.87− 5 33 7.0-7 43

1.0-2 2 ; 3 1.98− 1 25 4.1-7 19

ovarianP 1.5-1 591 ; 53 5.66− 2 25 1.1-7 06

253;15153 2.0-1 686 ; 30 1.53− 1 22 1.1-9 05

2.5-1 368 ; 22 2.65− 1 23 7.0-7 05

ovarianS 1.5-1 1506 ; 218 6.02− 2 26 4.6-7 2:05

216;373401 2.0-1 1395 ; 175 8.40− 2 25 4.2-7 1:53

2.5-1 1123 ; 133 1.11− 1 23 5.5-7 1:43

Acknowledgments. The authors would like to thank the Associate Editor and
anonymous referees for their helpful suggestions.

In Table 3, we report the detailed results for Ssnal-LSM in solving the least
squares constrained fused lasso problems of form (33) for large-scale UCI and biomed-
ical datasets. In our tests, we choose three different γ for each test instance to show
the changes in the sparsity patterns of the obtained solutions. In the table, µ∗ denotes
the solution for ϕ(µ) = % for a given %. The column “iteration” reports the number
of iterations taken by the Ssnal-LSM to solve the problems. It can be seen from
the table that Ssnal-LSM usually takes about 20 to 30 iterations to achieve a sparse
solution with the desired accuracy. That is, we only need to use Ssnal to solve 20
to 30 regularized least squares fused lasso subproblems. Combining the superior per-
formance of Ssnal presented in subsection 5.1, one can safely conclude that for most
test instances, the time required by Ssnal-LSM to solve the constrained problem (33)
can still be much less than that required by any of the previously tested first-order
methods to solve a single fused lasso regularized least squares problem.

6. Conclusion. In this paper, we showed that the level-set method can be used
to solve least squares constrained fused lasso problems where the subproblems are

SOLVING FUSED LASSO PROBLEMS 1865

fused lasso regularized least squares problems. As the backbone of the level-set
method, we designed an extremely fast semismooth Newton based augmented La-
grangian method, i.e., Ssnal, for solving the fused lasso regularized least squares
problems. We achieve the superior performance of Ssnal through a careful analysis
of the structures of the generalized Jacobian for the proximal mapping of the fused
lasso regularizer. In particular, we uncovered crucial second-order structured spar-
sity in the generalized Jacobian and designed several delicate numerical techniques
to exploit the underlying structures for solving the semismooth Newton systems in
the Ssnal algorithm very efficiently. Extensive numerical experiments on fused lasso
regularized least squares problems on high-dimensional real data instances show the
great benefits of our second-order nonsmooth analysis based algorithms.

Acknowledgments. The authors would like to thank the associate editor and
the anonymous referees for their helpful suggestions.

REFERENCES

[1] A. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander, and S. Roy, Level-Set
Methods for Convex Optimization, preprint, https://arxiv.org/abs/1602.01506, 2016.

[2] Á. Barbero and S. Sra, Modular Proximal Optimization for Multidimensional Total-
Variation Regularization, preprint, https://arxiv.org/abs/1411.0589, 2014.

[3] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–202, https://doi.org/10.1137/080716542.

[4] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and
Algorithms, Wiley and Sons, New York, 1993.

[5] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, The convex geometry
of linear inverse problems, Found. Comput. Math., 12 (2012), pp. 805–849.

[6] C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines, ACM Trans.
Intelligent Syst. Tech., 2 (2011), 27.

[7] L. Chen, D. F. Sun, and K.-C. Toh, An efficient inexact symmetric Gauss–Seidel based
majorized ADMM for high-dimensional convex composite conic programming, Math. Pro-
gram., 161 (2017), pp. 237–270.

[8] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley and Sons, New York, 1983.
[9] L. Condat, A direct algorithm for 1D total variation denoising, IEEE Signal Process. Lett.,

20 (2013), pp. 1054–1057.
[10] Y. Cui, D. F. Sun, and K.-C. Toh, On the R-superlinear convergence of the KKT residuals

generated by the augmented Lagrangian method for convex composite conic programming,
Math. Program., to appear, https://doi.org/10.1007/s10107-018-1300-6, 2018.

[11] P. L. Davies and A. Kovac, Local extremes, runs, strings and multiresolution, Ann. Statist.,
29 (2001), pp. 1–48.

[12] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems, Springer, New York, 2003.

[13] M. P. Friedlander, I. Macêdo, and T. K. Pong, Gauge optimization and duality, SIAM J.
Optim., 24 (2014), pp. 1999–2022, https://doi.org/10.1137/130940785.

[14] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, Pathwise coordinate optimization,
Ann. Appl. Statist., 1 (2007), pp. 302–332.

[15] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems
via finite element approximation, Comput. Math. Appl., 2 (1976), pp. 17–40.

[16] R. Glowinski and A. Marroco, Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires,
Revue Française Automat. Informat. Recherche Opérationnelle. Sér. Rouge Anal. Numér.,
9 (1975), pp. 41–76.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins Stud. Math.
Sci., Johns Hopkins University Press, Baltimore, MD, 2013.

[18] J. Han and D. F. Sun, Newton and quasi-Newton methods for normal maps with polyhedral
sets, J. Optim. Theory Appl., 94 (1997), pp. 659–676.

[19] N. A. Johnson, A dynamic programming algorithm for the fused lasso and l0-segmentation,
J. Comput. Graphic. Statist., 22 (2013), pp. 246–260.

https://arxiv.org/abs/1602.01506
https://arxiv.org/abs/1411.0589
https://doi.org/10.1137/080716542
https://doi.org/10.1007/s10107-018-1300-6
https://doi.org/10.1137/130940785

1866 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

[20] B. Kummer, Newton’s method for non-differentiable functions, Adv. Math. Optim., 45 (1988),
pp. 114–125.

[21] X. D. Li, D. F. Sun, and K.-C. Toh, A highly efficient semismooth Newton augmented La-
grangian method for solving lasso problems, SIAM J. Optim., 28 (2018), pp. 433–458,
https://doi.org/10.1137/16M1097572.

[22] X. D. Li, D. F. Sun, and K.-C. Toh, On the Efficient Computation of a Generalized Jacobian
of the Projector over the Birkhoff Polytope, preprint, https://arxiv.org/abs/1702.05934,
2017.

[23] J. Liu, S. Ji, and J. Ye, SLEP: Sparse Learning with Efficient Projections, Arizona State
University, Phoenix, AZ, 2009.

[24] J. Liu, L. Yuan, and J. Ye, An efficient algorithm for a class of fused lasso problems, in
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, New York, 2010, pp. 323–332.

[25] F. J. Luque, Asymptotic convergence analysis of the proximal point algorithm, SIAM J. Control
Optim., 22 (1984), pp. 277–293, https://doi.org/10.1137/0322019.

[26] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Con-
trol Optim., 15 (1977), pp. 959–972, https://doi.org/10.1137/0315061.

[27] Y. Nesterov, A method of solving a convex programming problem with convergence rate
O(1/k2), Soviet Math. Dokl., 27 (1983), pp. 372–376.

[28] A. B. Owen, A robust hybrid of lasso and ridge regression, Contemp. Math., 443 (2007),
pp. 59–72.

[29] J.-S. Pang and L. Qi, A globally convergent Newton method for convex SC 1 minimization
problems, J. Optim. Theory Appl., 85 (1995), pp. 633–648.

[30] J.-S. Pang and D. Ralph, Piecewise smoothness, local invertibility, and parametric analysis
of normal maps, Math. Oper. Res., 21 (1996), pp. 401–426.

[31] F. A. Potra, L. Qi, and D. F. Sun, Secant methods for semismooth equations, Numer. Math.,
80 (1998), pp. 305–324.

[32] N. Pustelnik and L. Condat, Proximity operator of a sum of functions; application to depth
map estimation, IEEE Signal Process. Lett., 24 (2017), pp. 1827–1831.

[33] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Program., 58 (1993),
pp. 353–367.

[34] S. M. Robinson, Solution continuity in monotone affine variational inequalities, SIAM J.
Optim., 18 (2007), pp. 1046–1060, https://doi.org/10.1137/060658576.

[35] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[36] R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm

in convex programming, Math. Oper. Res., 1 (1976), pp. 97–116.
[37] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control

Optim., 14 (1976), pp. 877–898, https://doi.org/10.1137/0314056.
[38] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, New York, 2009.
[39] A. Shapiro, On concepts of directional differentiability, J. Optim. Theory Appl., 66 (1990),

pp. 477–487.
[40] D. F. Sun and J. Sun, Semismooth matrix-valued functions, Math. Oper. Res., 27 (2002),

pp. 150–169.
[41] D. F. Sun, The strong second order sufficient condition and constraint nondegeneracy in

nonlinear semidefinite programming and their implications, Math. Oper. Res., 31 (2006),
pp. 761–776.

[42] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, Sparsity and smoothness
via the fused lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 67 (2005), pp. 91–108.

[43] E. Van den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solu-
tions, SIAM J. Sci. Comput., 31 (2008), pp. 890–912, https://doi.org/10.1137/080714488.

[44] E. Van den Berg and M. P. Friedlander, Sparse optimization with least-squares constraints,
SIAM J. Optim., 21 (2011), pp. 1201–1229, https://doi.org/10.1137/100785028.

[45] Y. Yu, On decomposing the proximal map, in Advances in Neural Information Processing
Systems, NIPS, La Jolla, CA, 2013, pp. 91–99.

[46] X. Zhang, M. Burger, and S. Osher, A unified primal-dual algorithm framework based on
Bregman iteration, J. Sci. Comput., 46 (2011), pp. 20–46.

[47] X.-Y. Zhao, D. F. Sun, and K.-C. Toh, A Newton-CG augmented Lagrangian method for
semidefinite programming, SIAM J. Optim., 20 (2010), pp. 1737–1765, https://doi.org/10.
1137/080718206.

[48] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat.
Soc. Ser. B Stat. Methodol., 67 (2005), pp. 301–320.

https://doi.org/10.1137/16M1097572
https://arxiv.org/abs/1702.05934
https://doi.org/10.1137/0322019
https://doi.org/10.1137/0315061
https://doi.org/10.1137/060658576
https://doi.org/10.1137/0314056
https://doi.org/10.1137/080714488
https://doi.org/10.1137/100785028
https://doi.org/10.1137/080718206
https://doi.org/10.1137/080718206

	Introduction
	A level-set method for the least squares constrained fused lasso problems
	Properties of the value function
	Algorithm Ssnal-LSM for the least squares constrained fused lasso problems
	A semismooth Newton based ALM for subproblems (8)

	Generalized Jacobian
	The generalized Jacobian of the solution mapping of a strongly convex QP
	Efficient computations of the generalized Jacobian of Proxp()

	A semismooth Newton method for solving subproblem (10) in Ssnal
	Efficient implementations of the semismooth Newton method by exploiting second-order sparsity

	Numerical experiments
	Numerical results for fused lasso regularized least squares problems
	Numerical results for high-dimensional biomedical datasets
	Numerical results for UCI datasets

	Numerical results for least squares constrained fused lasso problems

	Conclusion
	References

